
Expressing meaningful processing requirements
among HeTeRoGEneOu nodes in an active network

Virginie Galtier, Kevin Mills, Yannick Carlinet,
Stefan Leigh, Andrew Rukhin

National Institute of Standards and Technology

http://w3.antd.nist.gov/active-nets

Outline of the presentation

• Problem:
- Context: What are active nets? What are they for?
- Why is it interesting to know the CPU resources

requirement of an active application (AA)?
- What are the sources of variability in the execution

time of an AA?
• Proposed solution:

- Two models to characterize the processing
requirements of an application on any active node

- A mechanism to scale the models from one node
to a different one

• Discussion and future work

Active networks overview

• Active packets carry not only data but also the code
to process them which is executed at active nodes.

• Example: an application that sends MPEG packets
can specify an intelligent dropping algorithm to be
applied at intermediate nodes if congestion is
detected.

• Advantage: fast and easy deployment of customized
network services.

Why is it important to know the CPU resource
requirements of an active application?

• Implication: in an active net the processing
requirements can vary a lot from packet to packet .

• Without modeling, prediction, measurement and
control, 3 threats:
- a packet may consume excessive CPU time at a

node, causing the node to deny services to other
packets,

- an active node may be unable to schedule its
resources to meet the performance requirements
of packets,

- an active packet may be unable to select a path
that can meet its performance requirements.

Existing control solutions

• A limit fixed by each node, the same for all packets.
• A time-to-live for the packet fixed by the application,

the same for all nodes.

• Limitations with these solutions:
- How to choose the limit?
- This avoids major problems but doesn’t permit

optimum management.
- Because: all applications are treated the same

way.

Necessity of modeling CPU requirements

• Idea to overcome these limitations: measure the CPU
requirements of a packet once, and have the packet
transport this information along with its data and
code.

• Problem: there is no unit to measure CPU
requirement that can be understood by all active
nodes.

• It’s necessary to have a model which captures all
sources of variability and which can be translated on
every node into a meaningful measure.

Sources of variability in processing time

Processor RAM
Persistent

storage

Network

cards

Device

drivers
Scheduler

Resources Management

Services

Network

Protocols

Physical layer

Virtual
machine layer

ANodeOS
interface layer

OS layer

S1 S2 S3 SnActive Node OS system calls ...

SC1 SC2 SC3 SC4 SCmReal OS system calls ...

AA3

EE2:Magician (java)

AA4
AA1AA2

EE1:ANTS (java)

Modeling active applications: trace

Active Node OS
System calls
Monitoring

Execution trace
series of CPU time stamped
system calls and transitions

…
begin, user (4 cc), read (20 cc), user
(18 cc), write(56 cc), user (5 cc), end
begin, user (2 cc), read (21 cc), user
(18 cc), kill (6 cc), user (8 cc), end
begin, user (2 cc), read (15 cc), user
(8 cc), kill (5 cc), user (9 cc), end
begin, user (5 cc), read (20 cc), user
(18 cc), write(53 cc), user (5 cc), end
begin, user (2 cc), read (18 cc), user
(17 cc), kill (20 cc), user (8 cc), end
…

AA2

EE1:ANTS (java)

read write kill...
ANodeOS interface

OS layer
Physical layer

Modeling active applications: model M1

Execution trace

Scenario A:
sequence = “read-write”,
probability = 2/5

Scenario B:
sequence = “read-kill”,
probability = 3/5

Distributions of CPU time in system calls :

Model M1
(suited for ANTS applications)

0 5 10 15 20

0.8

0.2

P

cc

0 5 10 15 20

0.67
0.33

cc

P

Distributions of CPU time between system calls :

…
begin, user (4 cc), read (20 cc),
user (18 cc), write(56 cc), user
(5 cc), end
begin, user (2 cc), read (21 cc),
user (18 cc), kill (6 cc), user
(8 cc), end
begin, user (2 cc), read (15 cc),
user (8 cc), kill (5 cc), user (9
cc), end
begin, user (5 cc), read (20 cc),
user (18 cc), write(53 cc), user
(5 cc), end
begin, user (2 cc), read (18 cc),
user (17 cc), kill (20 cc), user
(8 cc), end
…

read

write kill

read-kill

write-end

begin-read read-write

kill-end

Modeling active applications: model M2

Execution trace

Scenario A:
sequence = begin, user (4,5 cc),
read (20 cc), user (18 cc), write
(54,5 cc), user (5 cc), end
probability = 2/5

Scenario B:
sequence = begin, user (2 cc), read
(18 cc), user (14.33 cc), kill
(10.33 cc), user (8.33 cc), end
probability = 3/5

Model M2
(suited for Magician applications)

…
begin, user (4 cc), read (20 cc),
user (18 cc), write(56 cc), user
(5 cc), end
begin, user (2 cc), read (21 cc),
user (18 cc), kill (6 cc), user
(8 cc), end
begin, user (2 cc), read (15 cc),
user (8 cc), kill (5 cc), user (9
cc), end
begin, user (5 cc), read (20 cc),
user (18 cc), write(53 cc), user
(5 cc), end
begin, user (2 cc), read (18 cc),
user (17 cc), kill (20 cc), user
(8 cc), end
…

Predicting CPU requirements

• A node needs to predict not only the average CPU
time required to execute a packet but also the high
percentiles (example : 95% of executions are
expected to complete within 70 cc).

• Model M1: simulation
• Model M2: analytical computation

Active Active average absolute deviation of predictions from reality (%)
Network Application M1, 100 bins, 20000 rep M1, 50 bins, 20000 rep M1, 50 bins, 500 rep M2

Platform mean high perc. mean high perc. mean high perc. mean high perc.

ANTS ping 0.859 0.9 0.643 1.622 2.696 9.8 0.028 16
multicast 0.398 1.94 0.351 3.002 4.913 15.93 0.001 18

magician ping 0.296 49 0.193 43 0.006 18
route 0.991 20 0.211 19 0.001 23

Overcoming node heterogeneity: node model

• Node model:
- a system benchmark program ⌫ for each system

call, average system
- for each EE, a user benchmark program ⌫ average

time spent in the EE between system calls

• To scale: a reference node model known by all other
active nodes

AA model on node 1:
read 30 cc
user 10 cc
write 20 cc

Model of node 1:
read 40 cc
write 18 cc
user 13 cc

Model of node 2:
read 20 cc
write 45 cc
user 9 ccscale

AA model on node 2:
read 30*20/40 = 15 cc
user 10*9/13 = 7 cc
write 20*45/18 = 50 cc

Overcoming node heterogeneity: results

Platform Application node 1 node 2 mean high perc.
Daisy Blue 2.78 4.91

Ping Daisy Sloth 4.55 11.05
Blue Daisy 3.63 5.64

ANTS Sloth Blue 7.69 8.33
Daisy Blue 0.32 7.29

Multicast Blue Daisy 3.15 11.79
Sloth Daisy 23.38 15.7
Blue Daisy 11.49 20.03

Ping Blue Sloth 8.01 5.2
Magician Daisy Blue 7.3 37.92

Blue Daisy 2.23 19.23
Route Daisy Blue 1.59 34.54

Sloth Blue 19.04 44.3

Limitations of our models

• Models can be large: O(number of scenarios, number
of bins, distributions of the times).

• Simulation can be resource and time consuming:
O(number of repetitions, size of the model).

• Trace-based models might represent probabilities not
met in reality, if the scenario mix used to generate the
traces does not represent the scenario mix actually
seen on the nodes.

• Application behavior, such as looping, may depend
on conditions at network nodes, and these conditions
can be difficult to predict when generating the original
traces.

Future work

• Increase the test bed size (more nodes, more
platforms, more applications)

• Investigate new models (your ideas are welcome!)
- e.g., parameterize paths for loops

• Investigate an “Active” model:
- gains experience as it travels through the net,
- continuously evaluate which of the available co-

existing models or prediction systems is the most
accurate to return the prediction.

• Integrate our models with GE network-resource
prediction system.

Your turn...

Questions, suggestions…

http://w3.antd.nist.gov/active-nets

